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Abstract: This final approach implies that all alternative solutions were pre-calculated by the scribes. The classification 

parameter is the difference (s-r) between two divisors of D in the decompositions 2/D =1/D1+1/D2. Adequate adjustments of 

(s-r) provide a low limit (57) to the count of alternatives. A four-component generator (2/3, 2/5, 2/7, 2/11) operates as a 

(hidden) mother-table. Adding few logical rules of common sense is enough to find the reasons of the Egyptian choices. Even 

2/95, not decomposable into two fractions but only into three, turns out quite explainable. 
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1. Introduction 

A general presentation of the Egyptian 2/D table and its 

bibliographic references was done in our first paper devoted 

to denominators D prime [1]. A scribe named Ahmes was the 

transcriber of the Rhind Mathematical Papyrus (RMP), 

copied from an ancient copy made in the time of Amenemhat 

III (XII dynasty) [2]. The recto of the papyrus contains this 

famous table. 

It should be kept in mind that the so-called ’2/D table’ is 

not the work of only one scribe, but surely results of 

indeterminate periods of trials and improvements processed 

by a team of scribes. 

In this second paper, we shall analyze only the 

decompositions into 2 terms if D is composite. 

Under a modern form we may write: 

2/D=1/D1+1/D2.                          (1) 

Before we start choosing decompositions for composite 

numbers D, it can be assumed that in the ancient time, the 

results for the prime numbers were already obtained [3]. This 

does not necessarily mean that there was a real chronology, 

like ‘results for D prime’ before ‘2/D table for D composite’. 

These two aspects are interrelated and the project of the 

whole table was certainly been processed simultaneously, but 

in a interdependent way by a few workshops of talented 

scribes. 

Accordingly, as it was stressed in our previous analysis 

[1], we have at our disposal a powerful tool, namely the four 

first simplest [two-terms] decompositions of 2/D, namely 

2/3, 2/5, 2/7 and 2/11. 

Every composite up to 99 (=3 × 33=11 × 9) may be 

derived from a Mother-Table looking like this: 

Table 1. Mother-Table (a tool for D composite). 

2/3 = 1/2 + 1/6 2 

2/5 = 1/3 + 1/15 3 

2/7 = 1/4 + 1/28 4 

· · · · · · · · · · · · · · ·  

2/11 = 1/6 + 1/66 6 

This table is far from insignificant and reveals a lot of 

informations, namely  

α: Ability to have found all decompositions (unique)  

of  2/ D with D prime 

β: Deliberate choice of stopping [2-terms] decompositions 

from 11. 

γ: As maximal multiplicity of the last denominator with D 

is 6, keep this simple property for all other remaining 

decompositions with D composite 
1
. 

                                                             

1 As will be seen further in all tables 3, 4, and 5, this decision is quite achievable. 



17 Lionel Bréhamet:  Egyptian 2/D Table (D Composite Number): Continuation and End of a Consistent Project  

 

Table 2. Reordered Ahmes’s selections for D composite. 

2/9 = 1/6 + 1/18 2 2/57 = 1/38 + 1/114 2 

 

2/15 = 1/10 + 1/30 2 2/63 = 1/42 + 1/126 2 

2/21 = 1/14 + 1/42 2 2/65 = 1/39 + 1/195 3 

2/25 = 1/15 + 1/75 3 2/69 = 1/46 + 1/138 2 

2/27 = 1/18 + 1/54 2 2/75 = 1/50 + 1/150 2 

2/33 = 1/22 + 1/66 2 2/77 = 1/44 + 1/308 4 

2/35 = 1/30 + 1/42 2/81 = 1/54 + 1/162 2 

2/39 = 1/26 + 1/78 2 2/85 = 1/51 + 1/255 3 

2/45 = 1/30 + 1/90 2 2/87 = 1/58 + 1/174 2 

2/49 = 1/28 + 1/196 4 2/91 = 1/70 + 1/130 

2/51 = 1/34 + 1/102 2 2/93 = 1/62 + 1/186 2 2/95 = 1/60 + 1/380 4 

+ 1/570 6 2/55 = 1/30 + 1/330 6 2/99 = 1/66 + 1/198 2 

Our m2 numbers, multiplicity of D2 with D (when there is 

one), are written as subscripts. 

The present study will remain faithful to our idea of a 

well-distributed global approach among groups of scribes. 

Accordingly a solution will be the result of “extensive tests 

applying canons of selection”, so quoting the terms used in 

the paper of Miatello on the subject [4]. 

2. All Possible Solutions (a Finite 

Countable Set) 

As soon the matter of composite number is approached, it 

becomes ineluctable to consider how the number can be 

decomposed in products of its divisors, as well for ancient 

mathematicians as for modern like us. It is possible to 

calculate all solutions for D composite, by using a theorem 

little-known or ignored. We call it N
[2]

 Τheorem, whose we 

will detail some aspects. It is unlikely that these properties 

were known to the ancients, but an heuristic discovery is 

never to exclude. 

Equation to be solved: 

N2 − σ1N + σ2 = 0, with integer solutions N1, N2 and N2 > N1. (2) 

Condition to be filled with p and q given: 

σ1/σ2= p/q= irreducible fraction < 1.               (3) 

Method: decompose q in triplets of its divisors as follows 

q = k × r × s with r < s.                              (4) 

N
[2]

 Τheorem: 

All the solutions are found in the finite set of N1, N2 given 

by 

N1= kr(r + s)/p and N2 = ks(r + s)/p,              (5) 

where (r + s) is selected such that (r + s)/p = integer 
2.
    (6) 

Egyptian property: 1/ N1 + 1/ N2= p/q.             (7) 

The relation between both solutions N1, N2 depends only 

on r, s: 

                                                             

2 Of course selection due to (6) vanishes for the Egyptian table since p = 2, and q, 

r, s are odd. 

N2 / N1= s/r.                                     (8) 

The ratio between N2 and q is given by 

N2 /q= (r + s) / pr.                               (9) 

If this quantity is integer, it will be labeled conventionally 

by m2 (a true multiplicity), if not we will use the 

denomination ‘fractional multiplicity’ with the label µ2. 

Another important definition will be useful, namely 

∆ s
r
= (s − r).                                    (10) 

This is the gap between two divisors of D which measures 

the closeness between them. 

Of course, the first trivial triplet decomposition of q = 1 × 

1 × q represents nothing but a trivial identity, since the 

integer solutions N1 = (q + 1)/ p and N2 = q(q + 1)/ p satisfy 

1/ N1 + 1/ N2= p/(q+1) + p/[q(q+1)] =p/q.            (11) 

In the Egyptian 2/q table (p = 2), if q is prime, formula 

(11) yields the unique solution. Clearly found by the scribes. 

However for q composite, this remains a solution among 

other. 

This extremal solution produces the largest denominator 

N2 and the highest multiplicity of N2 with q, namely m2 = (q 

+ 1)/2, certainly discarded by Egyptian scribes for obvious 

reasons. 

Furthermore there are other solutions to discard according 

to γ (information of Sect. 1). 

This is consistent with the last value of the Mother-table, 

namely 11. Indeed, if we admit a limitation of m2 by a top-

flag like  

Τf
[2]

 = 6,                                     (12) 

then, for p = 2, the following inequality is found: 

s ≤11 r.                                       (13) 

Yes, number 11 is well the one that appears in β 

(information of Sect. 1). 

It has often been debated about this value 11 and the 

Eratosthenes’s sieve as well as about the “perfectness” of the 

number 6, see for example Brown [5], however these notions 

are quite useless here. Simply, the present approach brings up 

an unexpected link between the numbers 11 and 6. 

Of course inequality (13) seriously reduces the number of 

trials for finding convenient integers r, s. 

In our table the solutions excluded by this inequality will 

be displayed as barred like 2/D=1/D1+1/D2. 

Be aware that the authors of the table have succeeded in 

calculating 2/35 or 2/91 where there is no multiple of D, then 

the question is not ‘why these two singular cases have been 

chosen?’ but why other existing cases have been discarded? 

Since they have also certainly succeeded to calculate all 

possible options, we are going to list all the cases ordered 

according to increasing values of ∆ s
r
. The method is quite 

similar to that followed in our previous work [1], where it 

can be observed that all Egyptian solutions were found in the 
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set {∆d, ∆d’≤10}. The value 10 (Egyptian decimal system) 

obviously is not a universal constant, but seems unavoidable. 

Other general problems of arithmetic would probably not 

have benefited from such an opportunity. However once 

again it can be tried to limit the investigations by the 

following arithmetical prescription: 

∆ s
r
 ≤ 10.                             (14) 

In Table 3, we shall gray out to indicate that an element 

does not satisfy this constraint, like ∆ s
r
. 

Condition ∆ s
r
 ≤ 10 is an ‘absolute’ condition stronger than 

the relative issued from (13). 

Although here the divisors involved (s and r) are not those 

of the first denominator as in [1] but those of D, we were 

surprised that the same approach was still operating and 

fruitful. 

Moreover, as we shall see, the “intriguing” cases 2/35 and 

2/91 do not need to have a separate treatment, as invoke a 

“arithmetic-harmonic” decomposition [5], (post) dating from 

ancient Greeks. 

Considering such examples (and some other) as singular, 

or “not optimal” [6], reflects just a modern point of view, 

mathematically speaking. An optimality concept depends on 

the views, and was certainly different in ancient context. 

Note: for interested readers, we have added two 

appendices (A and B) where we sketch out two different 

methods leading to the necessity of decomposing D or D
2
 as 

a product of two of its divisors. 

Total cases to be analyzed (as reported in our abstract) 

does not take into account the cases involving a gray out or 

lines barred. Throughout this paper, Egyptian choices will be 

indicated by the abridged notation Eg. An overview of all 

possibilities is displayed in Table 3. 

We see that the majority of the Egyptian choices were 

done according to the smallest values of ∆ s
r
. 

Nevertheless some cases show a ‘conflict’ when two 

identical ∆ s
r
 are in the presence of one-another. 

As we will see below, this is not a hard problem to solve. 

Abdulaziz [7] is remained faithful to the spirit of ancient 

Egypt in substantiating its arguments with fractional 

quantities, then we are going to do the same by using here 

our ‘fractional multiplicity’ µ2, however to a lesser extent. 

The closeness between 2 and the ‘fractional multiplicity’ 

µ2 will be estimated by a difference: 

∆ µ = 2 − µ2, (this ∆ here is written in italic).      (15) 

This difference is also fractional and could not have been a 

source of difficulty to sort them in increasing order, for 

example. In this kind of work, the ancient scribes were 

talented! 

Table 3. 2 terms decompositions with increasing values of ∆ s
r
. 

∆ s
r All possible solutions ∆ s

r All possible solutions 

2 22/9 = 1/6 + 1/18 2 Eg 10 2/55 = 1/30 + 1/330 6 Eg 

2 2/15 = 1/10 + 1/30 2 Eg 10 2/75b = 1/50 + 1/150 2 

2 2/15 = 1/12 + 1/20 4/3 10 2/77 = 1/42 + 1/462 6 

2 2/21 = 1/14 + 1/42 2 Eg 10 2/99a = 1/54 + 1/594 6 

2 2/27 = 1/18 + 1/54 2 Eg 12 2/39 = 1/21 + 1/273 7 

2 2/33 = 1/22 + 1/66 2 Eg 12 2/45b = 1/27 + 1/135 3 

2 2/35 = 1/30 + 1/42 6/5 Eg 12 2/65 = 1/35 + 1/455 7 

2 2/39 = 1/26 + 1/78 2 Eg 12 2/85 = 1/55 + 1/187 11/5 

2 2/45 = 1/30 + 1/90 2 Eg 12 2/91 = 1/49 + 1/637 7 

2 2/45 = 1/36 + 1/60 4/3 14 2/15 =1/8 + 1/120 8 

2 2/51 = 1/34 + 1/102 2 Eg 14 2/45 = 1/24 + 1/360 8 

2 2/57 = 1/38 + 1/114 2 Eg 14 2/51 = 1/30 + 1/170 10/3 

2 2/63 = 1/42 + 1/126 2 Eg 14 2/75 = 1/40 + 1/600 8 

2 2/63 = 1/56 + 1/72 8/7 14 2/95?=1/60 + 1/228 12/5 

2 2/69 = 1/46 + 1/138 2 Eg 16 2/51 = 1/27 + 1/459 9 

2 2/75a = 1/50 + 1/150 2 Eg 16 2/57 = 1/33 + 1/209 11/3 

2 2/75 = 1/60 + 1/100 4/3 16 2/85 = 1/45 + 1/765 9 

2 2/81a = 1/54 + 1/162 2 Eg 18 2/57 = 1/30 + 1/570 10 

2 2/87 = 1/58 + 1/174 2 Eg 18 2/63b = 1/36 + 1/252 4 

2 2/93 = 1/62 + 1/186 2 Eg 20 2/21 = 1/11 + 1/231 11 

2 2/99 = 1/66 + 1/198 2 Eg 20 2/63 = 1/33 + 1/693 11 

2 2/99 = 1/90 + 1/110 10/9 22 2/69 = 1/36 + 1/828 12 

4 2/15 = 1/9 + 1/45 3 22 2/75 = 1/42 + 1/350 14/3 

4 2/21 = 1/15 + 1/35 5/3 24 2/25 = 1/13 + 1/325 13 

4 2/25 = 1/15 + 1/75 3 Eg 24 2/75 = 1/39 + 1/975 13 

4 2/35 = 1/21 + 1/105 3 24 2/81b’ = 1/45 + 1/405 5 

4 2/45a = 1/27 + 1/135 3 26 2/27 = 1/14 + 1/378 14 

4 2/55 = 1/33 + 1/165 3 26 2/81 = 1/42 + 1/1134 14 

4 2/63 = 1/45 + 1/105 5/3 26 2/87 = 1/48 + 1/464 16/3 

4 2/65 = 1/39 + 1/195 3 Eg 28 2/87 = 1/45 + 1/1305 15 

4 2/77 = 1/63 + 1/99 9/7 28 2/93 = 1/51 + 1/527 17/3 

4 2/85 = 1/51 + 1/255 3 Eg 30 2/93 = 1/48 + 1/1488 16 

4 2/95 ?=1/57 + 1/285 3 30 2/99b = 1/54 + 1/594 6 

6 2/21 = 1/12 + 1/84 4 32 2/33 = 1/17 + 1/561 17 

6 2/27a = 1/15 + 1/135 5 32 2/99 = 1/51 + 1/1683 17 
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∆ s
r All possible solutions ∆ s

r All possible solutions 

6 6 2/35 = 1/20 + 1/140 4 34 2/35 = 1/18 + 1/630 18 

6 2/49 = 1/28 + 1/196 4 Eg 38 2/39 = 1/20 + 1/780 20 

6 2/55 = 1/40 + 1/88 8/5 44 2/45 = 1/23 + 1/1035 23 

6 2/63a = 1/36 + 1/252 4 48 2/49 = 1/25 + 1/1225 25 

6 2/77 = 1/44 + 1/308 4 Eg 50 2/51 = 1/26 + 1/1326 26 

6 2/81b = 1/54 + 1/162 2 54 2/55 = 1/28 + 1/1540 28 

6 2/91 = 1/52 + 1/364 4 56 2/57 = 1/29 + 1/1653 29 

6 2/91 = 1/70 + 1/130 10/7 Eg 62 2/63 = 1/32 + 1/2016 32 

8 2/27b = 1/15 + 1/135 5 64 2/65 = 1/33 + 1/2145 33 

8 2/33 = 1/21 + 1/77 7/3 68 2/69 = 1/35 + 1/2415 35 

8 2/45 = 1/25 + 1/225 5 74 2/75 = 1/38 + 1/2850 38 

8 2/63 = 1/35 + 1/315 5 76 2/77 = 1/39 + 1/3003 39 

8 2/65 = 1/45 + 1/117 9/5 80 2/81 = 1/41 + 1/3321 41 

8 2/81a’ = 1/45 + 1/405 5 84 2/85 = 1/43 + 1/3655 43 

8 2/99 = 1/55 + 1/495 5 86 2/87 = 1/44 + 1/3828 44 

8 2/99 = 1/63 + 1/231 7/3 90 2/91 = 1/46 + 1/4186 46 

10 2/33 = 1/18 + 1/198 6 92 2/93 = 1/47 + 1/4371 47 

10 2/39 = 1/24 + 1/104 8/3 94 2/95 = 1/50 + 1/950 10 

  
98 2/99 = 1/50 + 1/4950 50 

Table 4. Conflicting cases with identical ∆ s
r. 

∆ sr All possible solutions Appreciations Decisions 

2 2/15 = 1/10 + 1/30 2 Eg m2 = 2 possible m2 = 2 

2 2/15 = 1/12 + 1/20 4/3 ∆ µ = 42/63  

2 2/45 = 1/30 + 1/90 2 Eg m2 = 2 possible m2 = 2 

2 2/45 = 1/36 + 1/60 4/3 ∆ µ = 42/63  

2 2/63 = 1/42 + 1/126 2 Eg m2 = 2 possible m2 = 2 

2 2/63 = 1/56 + 1/72 8/7 ∆ µ = 54/63  

2 2/75a = 1/50 + 1/150 2 Eg m2 = 2 possible m2 = 2 

2 2/75 = 1/60 + 1/100 4/3 ∆ µ = 42/63  

2 2/99 = 1/66 + 1/198 2 Eg m2 = 2 possible m2 = 2 

2 2/99= 1/90+1/110 10/9 ∆ µ = 56/63  

6 2/91 = 1/52 + 1/364 4 m2 = 4 too far from 2  

non ∃ 6: 2/91 = 1/D1 + 1/D2 2 virtual row: non ∃ m2 =2 
¶
  

6 2/91 = 1/70 + 1/130 10/7 Eg ∆ µ = 36/63 µ2 = 10/7 

¶ 
in contrast to case 2/81b = 1/54 + 1/162 2 where also ∆ s

r
 = 6. Our second row for 2/91 is virtual but useful for clarity. 

Remark with Abdulaziz [7] that 2/91 is the only element 

that contains twice an annotation of scribe “find” on the 

Rhind Papyrus. Particular attention was really brought to this 

matter. It is not a coincidence that it appears in Table 4. In 

our view, it is not comparable with 2/35 which was solved 

immediately through its ∆ s
r
 = 2, by following our 

classification which discards ∆ s
r
 = 4, 6. Accordingly, as in 

our first paper [1], we stay faithful to the logic of Occam’s 

razor: simplicity and minimal hypotheses. 

Namely: if m2 = 2 is available, then retain it, or else adopt 

a value of µ2 closest to 2. 

Rarely a major project unfolds linearly, ie without a hitch. 

Nothing out of the ordinary, even today. Indeed there are still 

three cases unanswered, namely 2/77, 2/95 (and 2/55). 

Table 5. ‘no odd denominators’ precept. 

∆ s
r All possible solutions 

4 2/77 = 1/63 + 1/99 9/7 

6 2/77 = 1/44 + 1/308 4 Eg 

10 2/77 = 1/42 + 1/462 6 

4 2/95 ?= 1/57 + 1/285 3 

The ‘conflicting’ cases have been solved and ‘forgotten’. 

Now another strategy must be applied in a independent way. 

The aim is to solve one after the other difficulties 

encountered during the dynamical advancement of project. 

Thus a ‘local’ decision should not interfere with those taken 

previously. In the present instance, a reasonable option 

appears to be that of the famous rule ‘no odd denominators’. 

Only once we were forced to apply this option for solving the 

case 2/89 into 4 terms [1]. 

This was often invoked by Gillings [8], criticized by 

Bruins [9] and nevertheless several times used by Abdulaziz 

[7]. In accordance with this ‘precept’ (here used two times), 

Table 5 is displayed with some barred rows indicating what 

possibilities will be deleted. As will be shown further, there is 

no need apply this precept to 2/55. There are two immediate 

effects: the smallest ∆ s
r
 = 6 is chosen for 2/77 and there is no 

more possibility for 2/95! Thus the conclusion is that: 

2/77=1/144+1/308 4 Eg and 2/95 has no decomposition 

into two terms. 

Up to this point, the utilization rates of mother-table 1 with 

various divisors, are the following: 
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Table 6. Incomplete use of Mother-Table 

Mother-rows 
Number of 

times used 
Examples Divisors 

2/3 = 1/2 + 1/6 2 16 2/51 = [row1]/17 17 

2/5 = 1/3 + 1/15 3 3 2/65 = [row2]/13 13 

2/7 = 1/4 + 1/28 4 2 2/77 = [row3]/11 11 

2/11 = 1/6 + 1/66 6 0 no = [row4]/?? ?? 

In the current dynamic approach, it is the time to ask the 

question "what becomes 2/55? ". 

Table 7. the three last options for 2/55. 

∆ s
r Remaining solutions for 2/55 

4 2/55 = 1/33 + 1/165 3 

6 2/55 = 1/40 + 1/88 8/5 

10 2/55 = 1/30 + 1/330 6 Eg 

Please note that the relation of 2/55 with the mother-table 

is quite unique. In our previous paper [1] we showed that 

there were reasons for leaving the decompositions into 2 

terms from the value 11.  

This explained why start the remaining cases for D prime 

in [3- or 4-terms] from 13 (except for 23 that we have quite 

justified). Furthermore this fact assigned the quality of 

mother-table to the first four fractions. If the case 2/55 does 

not use {2/11} as template, this quality is lost, and a lot of 

things become un-understandable or inconsistent.  

This is why scribes adopted an ultimate decision for 2/55:  

Table 8. Status of 2/55 once completed the use of Mother-Table. 

Ahmes’s selection Mother-row Divisor 
Number of 

times used 

2/55 = 1/30 + 1/330 6 Eg 2/11 = 1/6 + 1/66 6 5 1 

Since the last case 2/95 has no solution into 2 terms, a 

decomposition should be found elsewhere.  

A solution within easy reach is simple by observing that 95 

= 5 × 19. 

2/19 has been already [1] calculated in [3-terms] (but not 

2/5), then it is enough to divide 2/19 by 5:  

(2/19 = 1/12 + 1/76 4 + 1/114 6 )/5 = 2/95 

 = 1/60 + 1/380 4 + 1/570 6 Eg ( Egyptian final result). 

This does not undermine the role of the [2-terms] mother-

table and (what is more) agrees with the prescription of γ 

sect. 1, discarding any multiplicity of the last denominator 

beyond of 6. 

Remark: with their experience in the [4-terms] analysis 

and using the same methods applied to a composite number, 

the scribe team could have tried to search for a solution into 4 

terms. Unfortunately the least bad solution is 2/95 = 1/90 + 

1/190 2 + 1/285 3 + 1/855 9. Of course rejected! 

3. Conclusion 

Yes, by discovering a key parameter like ∆ s
r
, there were 

still improvements to be made to the most recent theories 

namely that of Abdulaziz [7]. 

As it was seen, Table 2 (2/D with D composite) was easily 

re-constructed using a global approach. 

Furthermore we deliberately used not too much 

arithmetical analysis because that was not needed. We never 

needed assumption as to favor the largest denominator D1. 

Moreover, this occurrence appears only a few times (2) in our 

lists. Used by some authors, it is not a selection criterion in 

our approach. Looking back at the successive steps of 

selection, it could appear as incoherent for us (modern 

mathematicians) because we would have had the reflex to 

analyze all case by case and in ascending order as 2/9, 2/15, 

2/21 ···. Selections were made in the following order: 

{2/9, 2/21, 2/27, 2/33, 2/35, 2/39, 2/51, 2/57, 2/69, 2/81, 

2/87, 2/93, 2/25, 2/65, 2/85, 2/49}, 

{2/15, 2/45, 2/63, 2/75, 2/99, 2/91}, {2/77}, {2/55} and 

{2/95}. 

Nevertheless the choices made by the “builders” of Table 2 

are fully coherent. 

Actually, for composite numbers, this table exhibits no 

singularity. Singularities exist only for us. 

All that is in favor for the fact that Egyptians have 

calculated all possible cases and analyzed these ones from 

preliminary tables for making their choices. 

Appendix A: A Key-equation 

Anyway, all the solutions for the [2-terms] cases could 

well have been discovered by a method far from our N
[2]

 

Τheorem. The absence of a formalism with equations in 

Ancient Egypt does not forbid an heuristic discovery of a key 

equation like equality (22). 

D is decomposed as a product of two odd numbers l and m: 

D = l × m, with l ≤ m.                      (16) 

Notice that this decomposition is not necessarily unique. 

l,m may be prime numbers themselves or between them, or 

not. Case l = 1 and m = D also is possible. 

Clearly the equation used for 2-terms and D prime cannot 

longer be exploited under a primary form analogous to those 

used in our previous paper [1] for [3-terms] or [4-terms] 

series, namely 

1 = D/(2D1)+ d2/(2D1).                     (17) 

It should be transformed into a form approximately 

similar, by naturally imagining to redistribute both factors 

l,m, each for one fraction (in the sense used by Bruins [7]) 

like as: 

1= m/(2D1)+ l/(2D1),                        (18) 

whence 

2/D=1/(l D1)+1/(m D2).                    (19) 

A mixed form (simultaneously additive and multiplicative) 

shows what is the problem to solve: 

2 D1 D2 = l D1 + m D2.                    (20) 



21 Lionel Bréhamet:  Egyptian 2/D Table (D Composite Number): Continuation and End of a Consistent Project  

 

After a lot of trials, it depends on the intuition ability of 

scribes (or ourselves) for realizing that solutions D1 could 

be ’centered’ around m/2 as well as D2 around l/2, as 

suggested by (18). Thus, a first idea is to set 

2D1 = m + r1 and 2D2 = l + s2,        (21) 

where r1, s2 obviously are unknown odd numbers to be found 

by avoiding r1 = m and s2 = l which would lead to D1 = D2. 

From the two above equations, it can derived a key-

equation, only multiplicative, and more or less unexpected, 

namely  

r1s2 = D (=lm).                    (22) 

Once a doublet {r1, s2} chosen from this equation 

amazingly simple, all the solutions of the initial problem 

[see(1),(19)] are available, since (in modern algebraic 

notations) 

D1 = l(m + r1)/2 and D2 = m(l + s2)/2.       (23) 

We cannot argue that the solutions were found by this way, 

of course. 

Appendix B: A Babylonian Track 

From the basic equation  

2/D=1/D1+1/D2,                           (24) 

we could search for a decomposition of 2/D as a sum of two 

other terms, each smaller than 2/D, such that the sum to be 

2/D. 

2/D=2/D1+2/D2,                          (25) 

ie with a D1 not too close to D by an amount of k1 and a D2 

not too close to D by an amount of k2 (>k1). Actually this 

yields a decomposition of 1:  

1 = D/(D + k1)+ D/(D + k2).                 (26) 

With these definitions, (26) leads to 

k1 k2 = D
2
                                      (27) 

This gives the final solutions (in modern algebraic 

notations) 

D1 = (D + k1/)/2 and D2 = (D + k2)/2.            (28) 

Be careful to calligraphic notations for D1 and D2! 

Unknowns k1, k2 are not difficult to be found, with k1 < k2 

and k1, k2 odd numbers. 

Equation (27) would tend to suggest rather a Babylonian 

similarity, due to their techniques of using tables of squares 

for calculate the product of two numbers by means of 

mathematical identities! This is evidenced on the tablet 

‘Plimpton 322’ found in Senkereh (Larsa) in 1854 [10]. 

Besides, Ahmes says in the colophon at the beginning of 

papyrus that he was the copyist of an older papyrus, of 

Babylonian source [11]. Unexpectedly this would drive us to 

Pythagorean triples by the study of 

(k1 + k2)
2
 = (k1 − k2) 

2
+ (2D)

2
.                    (29) 

Results found in Appendix A or B lead to the same 

arithmetical conclusions as those obtained by our N
[2]

 

Τheorem. However, it is out of purpose of this article to develop 

here more. 
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